Phase Equilibria for Propan-1-ol + Water + Sodium Chloride and + Potassium Chloride and Propan-2-ol + Water + Lithium Chloride and + Lithium Bromide

Cheng-Long Lin

Department of Chemical Engineering, Kwang Wu Institute of Technology, Taipei, Taiwan 11271, Republic of China

Liang-Sun Lee

Department of Chemical Engineering, National Central University, Chungli, Taiwan 32054, Republic of China

Hsieng-Cheng Tseng*

Department of Chemical Engineering, National Taiwan Institute of Technology, Taipei, Taiwan 10672, Republic of China

> Measurements are reported on phase equilibria of the four mixtures propan-1-ol + water + sodium chloride, propan-1-ol + water + potassium chloride, propan-2-ol + water + lithium chloride, and propan-2-ol + water + lithium bromide at atmospheric pressure. The phase behavior of these mixtures exhibits three-phase equilibria, two liquids and one vapor, different from the previous reports that these only exhibit two phases. The phase diagrams for these mixtures are discussed.

Introduction

In a salt-containing mixture, the thermodynamic properties of the volatile components are different from those in a saltfree mixture. The relative volatilities of volatile components will be significantly altered even at low salt concentration. The increase of the relative volatility of a constituent component in a salt-containing solution is called "salting out"; a decrease is called "salting in". Systematic reviews of the salt effect in vapor-liquid equilibria (VLE) of such mixtures have been made (1, 2). Of the numerous vapor-liquid equilibrium studies of salt-containing mixtures, only a few (3, 4) had ever reported that the liquid phase will split into two immiscible phases near or at saturated salt concentrations. Though the phenomena of phase-splitting has been observed, the detailed compositions in each of the two immiscible liquid phases were not further analyzed. Instead, only the total composition of the liquid phase is reported and considered for VLE calculations which is not desirable in the design and operation of some important separation processes, such as extractive distillation.

Due to the different solubilities of a salt, as the composition of a binary mixture is varied it is possible for the liquid phase to split into two immiscible phases at certain salt concentrations depending on the solvents and the salt. Once the two immiscible liquid phases appear, the phase equilibrium should be considered as vapor-liquid-liquid equilibria (VLLE) instead of VLE. Some phase diagrams of liquid-liquid equilibria (LLE) (not VLLE) in salt-containing mixtures at a temperature of 25 °C have been published (5, 6). In order to observe the vapor-liquid-liquid equilibrium, and analyze the compositions of two liquid phases, a vapor-liquid equilibrium apparatus was designed. Four systems, propan-1-ol $+ H_2O + NaCl$, propan-1-ol $+ H_2O + KCl$, propan-2-ol $+ H_2O$ + LiCl, and propan-2-ol $+ H_2O + LiBr$, were chosen to study.

Figure 1. Scheme of vapor-liquid equilibrium apparatus: (A) liquid-phase bottle; (B) vapor-phase column; (C₁, C₂) insulating jackets; (D) thermometer; (E) condenser; (F) buffer; (G) vapor-phase sampling bottle; (H) electric heater with stirrer; (J) injection port; (K_1, K_2) liquid-phase sampling ports.

Vapor-liquid equilibria and vapor-liquid-liquid equilibria were measured at atmospheric pressure.

Experimental Work

Chemicals. The chemicals used were deionized distilled water, propan-1-ol (Kanto Chemical, 99 mass %), propan-2-ol (May & Baker, 99 mass %), LiBr, KCl, NaCl, and LiCl (Koch-Light, 99.95, 99.5, 99.5, and 99 mass %, respectively). All chemicals were used without further purification.

Procedure. The recirculation still used is shown in Figure 1. The liquid sample, about 350 mL, was fed into bottle A

^{*} To whom correspondence should be addressed.

Figure 2. Comparison of these results with those of the literature for the propan-1-ol $(1) + H_2O(2)$ system at atmospheric pressure.

Table I.	Vapor-Liquid	and Vapor-	Liquid-Liquid
Equilibria	a for Propan -1	$-oi(1) + H_2(0)$) (2) + NaCl (3)

(A)	Vapor-I	iquid Ec	uilibrium
-----	---------	----------	-----------

t/°C	x 3	x 1	y_1	α	x_{1}/x_{2}
88.0	0.0000	0.1030	0.3742	5.2068	0.1148
88.2	0.0105	0.0982	0.3882	5.8270	0.1102
88.3	0.0210	0.0941	0.4020	6.4717	0.1063
88.3	0.0313	0.0860	0.4253	7.8650	0.0974
88.4	0.0412	0.0843	0.4543	9.0430	0.0964
89.2	0.0532	0.0838	0.4599	9.3097	0.0971
89.8	0.0702	0.0782	0.4823	10.9820	0.0918
90.1	0.0842	0.0773	0.4922	11.5699	0.0922
87.7	0.0000	0.2052	0.3911	2.4878	0.2582
88.1	0.0102	0.2023	0.4203	2.8589	0.2569
88.4	0.0252	0.2011	0.4421	3.1481	0.2599
88.9	0.0302	0.1983	0.4623	3.475 9	0.2570
89.6	0.0483	0.1862	0.4850	4.1160	0.2432
87.7	0.0000	0.3010	0.4012	1.5560	0.4306
87.8	0.0112	0.2984	0.4243	1.7329	0.4322
88.0	0.0245	0.2910	0.4406	1.9190	0.4251
88.5	0.0344	0.2873	0.4773	2.2652	0.4236
89.3	0.0499	0.2810	0.4936	2.4940	0.4200
90.0	0.0553	0.2760	0.5150	2.7854	0.4127
87.6	0.0000	0.4062	0.4205	1.0607	0.6841
87.8	0.0103	0.3996	0.4652	1.3070	0.6772
88.2	0.0243	0.3932	0.4865	1.4621	0.6750
88.6	0.0355	0.3882	0.5221	1.7218	0.6736
87.7	0.0000	0.5021	0.4500	0.8113	1.0084
87.9	0.0048	0.5019	0.4823	0.9246	1.0174
88.1	0.0073	0.5065	0.4897	0.9350	1.0418
88.7	0.0101	0.5113	0.5232	1.0488	1.0683
88.0	0,0000	0.6011	0.4897	0.6368	1.5069
88.6	0.0044	0.5823	0.4982	0.7122	1.4089
88.9	0.0086	0.5801	0.5123	0.7604	1.4104
88.8	0.0000	0.7010	0.5480	0.5171	2.3445
89.0	0.0046	0.6967	0.5523	0.5370	2.3324
89.9	0.0000	0.7988	0.6298	0.4285	3.9702
90.4	0.0030	0.7912	0.6422	0.4737	3.8445
92.3	0.0000	0.9012	0.7710	0.3691	9.1215
92.7	0.0012	0.9003	0.7833	0.4003	9.1401
			T	1313	

(B) Vapor-Liquid-Liquid Equilibrium

	upper layer		lower layer			
t/°C	x ₃	x ₁	x 3	x ₁	y 1	
87.8	0.0134	0.3227	0.0603	0.0520	0.4356	
87.9	0.0123	0.3812	0.0653	0.0497	0.4410	
88.0	0.0111	0.4742	0.0756	0.0465	0.4499	
88.0	0.0098	0.5003	0.0812	0.0443	0.4553	
88.2	0.0084	0.5124	0.0899	0.0433	0.4587	
88.5	0.0070	0.5370	0.1054	0.0422	0.4675 (satd)	

through port J. Energy was supplied from an electrical heater (H) to evaporate the liquid. Once the liquid was boiling, the heater temperature was kept 20 °C higher than the boiling point in order to maintain steady boiling. To reduce heat loss as little as possible, column B was insulated with two-fold jackets being vacuated to 10^{-5} Torr. For each run, the

Table II. Vapor-Liquid and Vapor-Liquid-Liquid Equilibria for Propan-1-ol $(1) + H_2O(2) + KCl(3)$

(A) Vapor-Liquid Equilibrium								
t/°C	x ₃	x 1	y 1	α	x_{1}/x_{2}			
88.0	0.0000	0.1020	0.3722	5.2195	0.1136			
88.3	0.0115	0.0972	0.3894	5.9233	0.1091			
88.5	0.0262	0.0923	0.4133	6.9277	0.1047			
88.7	0.0344	0.0872	0.4326	7.9810	0.0993			
89.9	0.0774	0.0752	0.4943	12.0206	0.0887			
90.3	0.0914	0.0743	0.5023	12,5740	0.0891			
87.7	0.0000	0.2048	0.3903	2.4856	0.2575			
88.3	0.0122	0.2012	0.4333	3.0356	0.2558			
88.5	0.0262	0.2004	0.4536	3.3124	0.2591			
89.1	0.0342	0.1953	0.4735	3.7056	0.2535			
89.9	0.0583	0.1802	0.4935	4.4326	0.2366			
90.6	0.0714	0.1583	0.5113	5.5630	0.2055			
87.8	0.0000	0.3023	0.4034	1.5606	0.4333			
88.0	0.0143	0.2965	0.4462	1.9117	0.4302			
88.3	0.0225	0.2932	0.4621	2.0709	0.4285			
88.5	0.0321	0.2893	0.4884	2.3152	0.4263			
89.8	0.0512	0.2822	0.5056	2.6012	0.4233			
90.2	0.0587	0.2742	0.5187	2.8527	0.4110			
87.6	0.0000	0.4034	0.4187	1.0652	0.6762			
87.8	0.0123	0.3976	0.4476	1.2277	0.6738			
88.3	0.0252	0.3911	0.4887	1.4881	0.6700			
88.7	0.0410	0.3823	0.5055	1.6517	0.6629			
89.2	0.0505	0.3777	0.5234	1.8094	0.6605			
87.7	0.0000	0.5034	0.4511	0.8107	1.0137			
88.1	0.0052	0.5003	0.4914	0.9650	1.0117			
88.5	0.0074	0.4952	0.5123	1.0708	0.9956			
88.9	0.0113	0.4876	0.5334	1.2013	0.9731			
89.6	0.0334	0.4776	0.5564	1.3719	0.9767			
88.0	0.0000	0.6002	0.4875	0.6336	1.5013			
88.5	0.0036	0.5863	0.5213	0.7684	1.4297			
89.0	0.0066	0.5831	0.5403	0.8403	1.4212			
89.5	0.0089	0.5776	0.5512	0.8982	1.3969			
90.1	0.0102	0.5572	0.5734	1.0682	1.3343			
88.8	0.0000	0.7021	0.5512	0.5211	2.3568			
89.4	0.0056	0.6927	0.5724	0.5939	2.2960			
90.4	0.0084	0.6823	0.5912	0.6734	2.2059			
89.9	0.0000	0.7980	0.6292	0.4295	3.9505			
90.3	0.0022	0.7963	0.6382	0.4512	3.9519			
90.5	0.0031	0.7902	0.6554	0.5050	3.8229			
92.4	0.0000	0.9022	0.7743	0.3719	9.2249			
92.8	0.0015	0.8994	0.7982	0.4424	9.0757			
	(B) Vapor-Liquid-Liquid Equilibrium							

	upper layer		lower layer			
t/°C	x 3	\boldsymbol{x}_1	x 3	x ₁	${\mathcal Y}_1$	
87.8	0.0155	0.3125	0.0556	0.0571	0.4245	
87.8	0.0144	0.3623	0.0634	0.0562	0.4321	
88.0	0.0138	0.4621	0.0721	0.0551	0.4398	
87.9	0.0115	0.4876	0.0816	0.0540	0.4434	
88.3	0.0101	0.5001	0.0854	0.0522	0.4501	
88.4	0.0088	0.5126	0.0876	0.0512	0.4554 (satd)	

time needed to reach equilibrium was 40 min or so; then the system temperature was recorded by a calibrated thermometer (D) with 0.1 K accuracy. All the experiments were run at atmospheric pressure which was $760 \pm 3 \text{ mmHg}$. The vaporphase sample was collected in bottle G. The liquid-phase samples must be collected from ports K₁ and K₂ separately, and then mixed together immediately and placed in a constant-temperature bath which is kept at the same temperature as the system. This method of liquid-phase samples are collected with minimum error. Placing the liquid-phase samples into the bath was essential to avoid the equilibrium state of the two immiscible liquid phases being altered because the solubilities of the salt in solvents are dependent on temperature.

For each system, the experiment began with a salt-free mixture of solvents with the appropriate composition. After measurement on this mixture, the heater power was turned off and the stopper of port J was removed to add more salt. After the preparation of a new liquid sample, the power of

308 Journal of Chemical and Engineering Data, Vol. 38, No. 2, 1993

Table III. Vapor-Liquid and Vapor-Liquid-Liquid Equilibria for Propan-2-ol $(1) + H_2O(2) + LiCl(3)$

Table IV. Vapor-Liquid and Vapor-Liquid-Liquid Equilibria for Propan-2-ol $(1) + H_2O(2) + LiBr(3)$

(A) Vapor–Liquid Equilibrium								
t/°C	x ₃	\boldsymbol{x}_1	${\mathcal Y}_1$	α	x_{1}/x_{2}			
83.0	0.0000	0.1011	0.5034	9.0129	0.1125			
84.1	0.0082	0.0952	0.5112	9.9397	0.1062			
84.6	0.0252	0.0864	0.5203	11.4690	0.0973			
82.5	0.0410	0.0680	0.5564	17.1910	0.0763			
82.6	0.0811	0.0521	0.6750	37.7872	0.0601			
83.1	0.1200	0.0350	0.7412	78.9642	0.0414			
81.7	0.0000	0.1923	0.5345	4.8228	0.2381			
81.7	0.0110	0.1745	0.5482	5.7400	0.2142			
81.8	0.0200	0.1652	0.5898	7.2658	0.2027			
82.0	0.0451	0.1421	0.6110	9.4827	0.1748			
80.9	0.0652	0.1320	0.6448	11.9371	0.1644			
81.8	0.1101	0.1208	0.7532	22.2119	0.1571			
81.2	0.0000	0.3133	0.5600	2.7896	0.4562			
81.5	0.0092	0.3120	0.5713	2.9386	0.4596			
81.3	0.0281	0.2911	0.5980	3.6226	0.4276			
80.8	0.0520	0.2560	0.6327	5.0062	0.3699			
80.4	0.0701	0.2465	0.6833	6.5952	0.3607			
82.2	0.0840	0.2503	0.7201	7.7058	0.3760			
80.8	0.0000	0.4110	0.5898	2.0605	0.6978			
81.1	0.0102	0.4003	0.6089	2.3324	0.6791			
80.8	0.0276	0.3903	0.6223	2.5738	0.6705			
80.8	0.0530	0.3454	0.6644	3.7520	0.5741			
82.0	0.0901	0.3387	0.7324	5.3437	0.5430			
80.3	0.0000	0.5330	0.6135	1.3908	1.1413			
81.0	0.0111	0.5214	0.6541	1.7358	1.1153			
80.6	0.0350	0.5021	0.6804	2.1111	1.0847			
81.8	0.0650	0.4972	0.7412	2.8962	1.1357			
80.2	0.0000	0.5910	0.6265	1.1608	1.4450			
80.6	0.0121	0.5897	0.6373	1.2226	1.4809			
80.8	0.0220	0.5712	0.6522	1.4077	1.4041			
80.7	0.0360	0.5630	0.7510	2.3411	1.4040			
80.5	0.0000	0.7440	0.7371	0.9647	2.9063			
80. 9	0.0130	0.7360	0.7723	1.2166	2.9323			
80.9	0.0000	0.8321	0.7840	0.7324	4.9559			
81.2	0.0071	0.8210	0. 8444	1.1832	4.7760			
81.1	0.0000	0. 9 101	0.8901	0.8000	10.1235			
81.3	0.0030	0.9060	0.9210	1.2096	9.9560			
	(B) Vapor-Liquid-Liquid Equilibrium							

	(Д)	apoi	Diquiu	Eldaig Edailiouram	
		_			
1		1		1	

upper layer		upper layer lower layer			
t/°C	x 3	\boldsymbol{x}_1	\boldsymbol{x}_3	\boldsymbol{x}_1	\mathcal{Y}_1
81.0	0.0154	0.3427	0.0596	0.0526	0.6323
81.2	0.0146	0.3765	0.0665	0.0435	0.6373
81.1	0.0134	0.4431	0.0762	0.0404	0.6412
81.2	0.0122	0.4825	0.0824	0.0378	0.6486
81.2	0.0102	0.5023	0.0903	0.0334	0.6552
81.3	0.0090	0.5470	0.0988	0.0318	0.6615 (satd)

the heater was restarted to proceed with another new experiment. These steps were repeated until the liquid was saturated with salt. The whole liquid sample remaining in bottle A was then discarded, bottle A was washed with distilled water, and a new salt-free mixture with a different composition was prepared for the next experiment run.

Methods of Analysis. The compositions of solvent in the vapor and liquid phases were analyzed by GC with a TCD detector (China Chromatography Co., 8700T). A column of Propak Q was used. The optimum operating conditions were the following: injection temperature, 170 °C; oven temperature, 160 °C; detector temperature, 160 °C; carrier gas, helium with a flow rate of $0.5 \text{ cm}^3 \text{ s}^{-1}$. To avoid the nonvolatile salt being accumulated in the column, a piece of filter column was placed before the analyzing column. A calibration curve was obtained by measuring a set of standard solutions with known mole fractions of alcohol in the alcohol + H₂O mixtures, and the curve was used to calculate the mole fraction of alcohol in unknown samples. The average error in the measurement of the mole fraction is ± 0.0005 which was obtained by comparing the known composition of the made-up sample to the composition calculated from the calibration curve. The mass of salt in the sample was measured, after removal of the

(A) Vapor–Liquid Equilibrium								
t/°C	x ₃	x 1	y_1	α	x_{1}/x_{2}			
84.4	0.0000	0.0801	0.5110	12.0011	0.0871			
84.2	0.0102	0.0723	0.5232	13.8933	0.0788			
84.1	0.0250	0.0621	0.5343	17.3278	0.0680			
84.0	0.0430	0.0534	0.5640	22.9307	0.0591			
82.7	0.0730	0.0444	0.5933	31.3974	0.0503			
82.6	0.1030	0.0383	0.7234	65.6700	0.0446			
81.8	0.0000	0.1921	0.5332	4.8039	0.2378			
81.8	0.0111	0.1703	0.5448	5.8310	0.2080			
82.0	0.0340	0.1497	0.5712	7.5603	0.1797			
81.1	0.0503	0.1400	0.6021	9.2953	0.1729			
81.0	0.0689	0.1343	0.6423	11.5747	0.1685			
81.3	0.0903	0.1203	0.6844	15.8578	0.1524			
81.2	0.0000	0.3123	0.5594	2.7958	0.4541			
81.6	0.0099	0.3073	0.5712	3.0027	0.4507			
81.8	0.0230	0.2902	0.5930	3.5637	0.4225			
80.8	0.0503	0.2687	0.6220	4.4784	0.3946			
80.4	0.0703	0.2586	0.6643	5.6733	0.3853			
82.2	0.0856	0.2521	0.6911	6.6373	0.3806			
80.9	0.0000	0.4202	0.5892	1.9790	0.7247			
81.1	0.0101	0.4012	0.6020	2.2775	0.6815			
80.8	0.0303	0.3812	0.6334	2.8047	0.6477			
80.8	0.0532	0.3573	0.6654	3.5771	0.6061			
82.1	0.0820	0.3410	0.6889	4.2794	0.5910			
80.4	0.0000	0.5110	0.6035	1.4565	1.0450			
81.1	0.0121	0.5222	0.6231	1.5127	1.1213			
80.6	0.0460	0.4998	0.6956	2.2870	1.1004			
81.7	0.0702	0.4811	0.7223	2.8054	1.0722			
80.2	0.0000	0.6158	0.6430	1.1237	1.6028			
80.5	0.0102	0.6133	0.6633	1.2421	1.6290			
80.9	0.0255	0.6003	0.6983	1.5411	1.6042			
80.8	0.0388	0.5921	0.7244	1.8107	1.6042			
80.2	0.0000	0.7142	0.7030	0.9472	2.4990			
80.5	0.0188	0.7132	0.7443	1.1705	2.6612			
80.4	0.0000	0.8023	0.7721	0.8348	4.0582			
80.6	0.0085	0.8012	0.8021	1.0057	4.2102			
01.I	0.0000	0.9020	0.8733	0.7489	9.2041			
81.4	0.0021	0.9013	0.8902	0.8878	9.3302			
	(P) Vanar-Liquid Liquid Fauilibrium							

v apoi -Liquid Equilibrium upper layer lower layer t/°C \boldsymbol{x}_3 \boldsymbol{x}_1 x_3 \boldsymbol{x}_1 y_1 81.1 0.0167 0.3214 0.0564 0.0526 0.6298 81.1 0.0152 0.35220.0653 0.0501 0.6354 81.1 0.0145 0.4214 0.0756 0.0476 0.6398 81.2 0.0134 0.4633 0.0812 0.04520.642081.2 0.0112 0.4965 0.0886 0.0442 0.6456 0.0101 0.5254 0.0954 81.4 0.0432 0.6543 (satd) 0.8 0.2 0.9 0.1 1.0 0.0 0.0 0.5 1.0 2

solvent, by using a Mettler balance with a precision of ± 0.0001 g.

Results and Discussion

To test the reliability of the equilibrium still designed in this study, a vapor-liquid equilibrium experiment of the

Figure 4. Phase diagram of the propan-1-ol $(1) + H_2O(2)$ + KCl (3) system at atmospheric pressure and boiling points.

Figure 5. Phase diagram of the propan-2-ol $(1) + H_2O(2)$ + LiCl (3) system at atmospheric pressure and boiling points.

Figure 6. Phase diagram of the propan-2-ol $(1) + H_2O(2)$ + LiBr (3) system at atmospheric pressure and boiling points.

propan-1-ol + H_2O system at atmospheric pressure was done, and the result is shown in Figure 2. The average deviation in the vapor-phase composition between the experimental data and that found in the literature (7) was 0.35%.

The experimental data of the four systems propan-1-ol + $H_2O + NaCl$, propan-1-ol + $H_2O + KCl$, propan-2-ol + H_2O + LiCl, and propan-2-ol + H_2O + LiBr at atmospheric pressure are listed in Tables I-IV, respectively. In each system, the subscripts 1-3 represent alcohol, water, and salt, respectively.

The relative volatility α was usually used to reflect the salt effect in a salt-containing mixture. Here, α is defined as

$$\alpha = \frac{y_1/x_1}{y_2/x_2} \tag{1}$$

where x_1 and y_1 are the mole fractions of alcohol in the liquid

and vapor phases, respectively, and x_2 and y_2 are the mole fractions of water in the liquid and vapor phases, respectively. Part A of each table lists the vapor-liquid equilibrium data and is divided into nine subsets. In each subset, the mole ratio x_1/x_2 is nearly constant while the amount of salt is increased. The more salt dissolved in the mixture, the greater the relative volatility. So for each system, alcohol was the salting-out component and water was the salting-in component.

In each system, the liquid phase split into two immiscible phases. Analyzing the compositions of these two equilibrium liquid phases, it was found that the upper layer was the alcohol-rich, salt-poor phase, and the lower layer was the water-rich, salt-rich phase. This was due to the large difference between the solubility of the salt in alcohol and that in water. The salts are perhaps all "structure makers" in the sense of enhancing the structure of water. Therefore, the alcohol tends to become less soluble in water and ultimately forms a second, more stable liquid phase. Once the liquid phase splits, any addition of salt will alter the compositions of both immiscible phases. When the system is saturated with salt, the compositions of each phase will no longer change, even though the relative amount of the two solvents may change as predicted by the phase rule.

The vapor-liquid-liquid equilibrium results are summarized in part B of Tables I-IV. Figures 3-6 are the phase diagrams for the four systems studied. They indicate the regions in which the liquid phase will split.

Conclusion

Vapor-liquid equilibrium measurements were made on four systems consisting of two solvents and one salt at atmospheric pressure. For each mixture, the alcohol was the salting-out component. The reported experimental data included two parts, the vapor-liquid equilibrium data and the vaporliquid-liquid equilibrium data. It is important to note that when the liquid phase splits into two immiscible liquid phases, the compositions of the two liquid phases should not be treated as a total composition for the reason of better design and operation of some important separation processes.

Glossary

- mole fraction of alcohol in the liquid phase \boldsymbol{x}_1
- mole fraction of water in the liquid phase \boldsymbol{x}_2
- mole fraction of salt in the liquid phase \boldsymbol{x}_3
- mole fraction of alcohol in the vapor phase **y**1
- mole fraction of water in the vapor phase y_2
- relative volatility of alcohol to water α

Literature Cited

- (1) Furter, W. F.; Cook, R. A. Int. J. Heat Mass Transfer 1967, 10, 23.
- Furter, W. F. Can. J. Chem. Eng. 1977, 55, 229. Sada, E.; Morisue, T. J. Chem. Eng. Jpn. 1975, 3, 196. (2)
- (3)
- Morrison, J. F.; Baker, J. C.; Meredith, H. C., III; Newman, K. E.; Walter, T. D.; Massie, J. D.; Perry, R. L.; Cummings, P. T. J. Chem. (4) Eng. Data 1990, 35, 395.
- Faizal, M.; Smagghe, F. J.; Malmary, G. H.; Lozar, J.; Molinier, R. J. Chem. Eng. Data 1990, 35, 352.
- Greve, A.; Kula, M.-R. Fluid Phase Equilib. 1991, 62, 53.
- Gmehling, J.; Onken, U.; Arlt, W. Vapor-Liquid Equilibrium Data Collection; Chemistry Data Series; DECHEMA: Frankfurt/Main, 1980; Vol. I, Part 1a, p 238.

Received for review July 28, 1992. Revised November 5, 1992. Accepted December 18, 1992. The authors acknowledge with grati-tude the National Science Council, Taiwan, ROC, for financial support through Grant No. NSC79-0402-E011-12.